基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤推荐算法中存在的数据稀疏性问题,提出了一种基于二分 K-means 的协同过滤推荐算法。该算法在K-means算法的基础上,为了降低初始质点选择对聚类结果的影响,在运行中逐个添加质点。首先初始化评分数据并将其作为初始簇,然后选择合适的簇随机产生两个质点将簇分裂为两个簇,重复上述步骤,直到聚类完成。最后为了降低不同用户评分标准差异,将用户评分的平均值和用户同簇内相互间的相似度相结合,计算预测评分矩阵,生成推荐结果。实验结果表明,改进后的算法较好地解决了数据稀疏问题,提高了推荐质量。
推荐文章
基于NKL和K-means聚类的协同过滤推荐算法
协同过滤
推荐算法
矩阵稀疏
K-means
相似性度量
面向个性化推荐系统的二分网络协同过滤算法研究
个性化推荐
协同过滤
二分网络
灰色关联
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二分 K-means的协同过滤推荐算法
来源期刊 软件导刊 学科 工学
关键词 K-means算法 二分K-means 协同过滤 推荐算法
年,卷(期) 2017,(1) 所属期刊栏目 算法与语言
研究方向 页码范围 26-28,29
页数 4页 分类号 TP312
字数 2654字 语种 中文
DOI 10.11907/rjdk.162275
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张建明 江苏大学计算机科学与通信工程学院 72 710 13.0 23.0
2 吴金李 江苏大学计算机科学与通信工程学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (58)
参考文献  (7)
节点文献
引证文献  (10)
同被引文献  (33)
二级引证文献  (3)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(6)
  • 引证文献(3)
  • 二级引证文献(3)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
二分K-means
协同过滤
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导