原文服务方: 计算机测量与控制       
摘要:
针对湿度传感器的输出非线性问题,提出了基于L-M算法建立BP神经网络进行补偿校正,实现电阻型湿度传感器的输入与输出非线性补偿,并与共轭梯度算法、拟牛顿算法所建立的神经网路模型进行对比,重点比较了模型迭代性能、标准偏差;最后发现当神经网络用L-M算法进行训练模拟时在迭代性能、标准偏差等方面具有更优异的表现,更适合湿度传感器的非线性特性的补偿校正.
推荐文章
基于神经网络融合的传感器温度误差补偿
温度误差补偿
神经网络
数据融合
漏磁检测
扩散硅压力传感器的高精度误差补偿算法
扩散硅压力传感器
温度
非线性
误差补偿
满量程
基于虚拟压力传感器补偿的传感器网络模型
虚拟压力传感器补偿
数学模型
传感器网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于L-M算法的反向传播网络的湿度传感器输出误差补偿研究
来源期刊 计算机测量与控制 学科
关键词 湿度传感器 误差补偿 反向传播网络 共轭梯度算法 拟牛顿算法 L-M算法
年,卷(期) 2017,(12) 所属期刊栏目 智能仪器与传感技术
研究方向 页码范围 302-306
页数 5页 分类号 TP837
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2017.12.078
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁杰 10 32 3.0 5.0
2 晏天 6 4 1.0 2.0
3 李庆超 5 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (151)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
湿度传感器
误差补偿
反向传播网络
共轭梯度算法
拟牛顿算法
L-M算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导