基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对包含复杂纹理信息的遥感图像难以进行精准图像分割的问题,提出了一种结合纹理去除的遥感图像分割方法.首先,改进了相对全变差纹理去除方法,通过引入新的范数约束使相对全变差纹理去除方法可以在去除纹理信息的同时凸显图像中的主要结构,达到辅助分割的效果;然后,使用均值漂移算法对经过纹理去除的遥感图像进行无监督聚类,达到分割的目的;最后,提出的遥感图像分割算法在不同遥感图像上进行了测试.实验结果表明,在高分辨遥感图像的分割上,所提算法可以分割出遥感图像中的主要目标,和直接分割或者结合其他纹理去除方法相比取得了更好的分割结果.所提出的分割算法可以降低纹理信息对图像分割的影响,提高遥感图像分割的精度.
推荐文章
结合纹理特征改进的GBIS图像分割方法
图像分割
纹理特征
图论法
L*a*b*彩色空间
稀疏编码在图像纹理分割中的应用研究
视感知系统
稀疏编码
纹理分割
综合纹理和颜色的图像分割方法
图像分割
Gabor小波变换
滤波器
ISODATA聚类
基于高斯混合模型的纹理图像的分割
高斯混合模型
EM算法
最大似然估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合纹理去除的遥感图像分割
来源期刊 计算机应用 学科 工学
关键词 纹理 相对全变差 均值漂移 遥感图像分割
年,卷(期) 2017,(11) 所属期刊栏目 第十六届中国机器学习会议(CCML 2017)
研究方向 页码范围 3162-3167
页数 6页 分类号 TP751.1
字数 6571字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017.11.3162
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪西莉 陕西师范大学计算机科学学院 83 804 16.0 23.0
2 周明非 陕西师范大学计算机科学学院 3 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (11)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(1)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
纹理
相对全变差
均值漂移
遥感图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
论文1v1指导