基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对鲁棒L1范数非平行近似支持向量机(L1-NPSVM)求解算法无法保证获取可靠解的问题,提出一个新颖的逶代算法来解L1-NPSVM的目标问题.首先,根据L1-NPSVM原目标问题对解具有规模不变性,将其转换为一个等价的带等式约束的最大化问题.该迭代算法在每次迭代中利用更新权机制获取每次迭代的更新解;每次迭代中,问题归结为解两个快速的线性方程问题.从理论上证明了算法的收敛性.在公共UCI数据集上,实验显示,所提算法不仅在分类性能上要远远好于L1-NPSVM,且具有相当的计算优势.
推荐文章
基于戴帽L1范数的双支持向量机
双支持向量机
L1范数
L2范数
戴帽L1范数
损失函数
基于L1范数的形状快速匹配算法
内距离形状上下文
轮廓点分布直方图
地球移动距离
L1范数
形状检索
基于L1/2范数约束增量非负矩阵分解的SAR目标识别
增量非负矩阵分解
合成孔径雷达
目标识别
L1/2范数约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于有效迭代算法的鲁棒L1范数非平行近似支持向量机
来源期刊 计算机应用 学科 工学
关键词 L1-范数距离 L1范数非平行近似支持向量机 梯度上升 线性方程 分类
年,卷(期) 2017,(11) 所属期刊栏目 第十六届中国机器学习会议(CCML 2017)
研究方向 页码范围 3069-3074,3079
页数 7页 分类号 TP39
字数 6893字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017.11.3069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴长勤 安徽科技学院信息与网络工程学院 11 15 2.0 3.0
2 葛华 安徽科技学院信息与网络工程学院 11 19 3.0 4.0
3 赵彩云 安徽科技学院信息与网络工程学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (20)
参考文献  (17)
节点文献
引证文献  (8)
同被引文献  (47)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(5)
  • 参考文献(3)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(6)
  • 引证文献(6)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
L1-范数距离
L1范数非平行近似支持向量机
梯度上升
线性方程
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
论文1v1指导