基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为有效解决中文微博情感数据分布不平衡的分类问题,提出一种融合Affinity Propogation(AP)算法、Word2vec技术和条件随机场(CRF)模型的分类方法.通过AP算法对微博数据进行聚类,将多数类样本按照相似性的度量划分为若干簇类,使类间距离极大化、类内距离极小化.利用欠采样技术构建情感倾向分布平衡的训练集,采用Word2vec计算并求出语义相似度最高的文本来扩展微博句子以增加情感信息,使用CRF模型计算已经平衡并扩展后的训练集标签序列,在数据集情感倾向分布不平衡时也能准确地分类微博情感倾向.实验结果表明,与ACRF方法、CRF方法及SCRF方法相比,该方法在召回率和G均值评价标准上具有更好的效果.
推荐文章
基于回应消息的中文微博情感分类方法
中文微博
情感分类
回应消息
支持向量机
基于关键句分析的微博情感倾向性研究
情感分析
倾向性分析
关键句
依存句法分析
观点挖掘
基于图模型和多分类器的微博情感倾向性分析
图模型
情感词
条件随机场
支持向量机
网页排序算法
倾向性分析
基于性格的微博情感分析模型PLSTM
情感分析
性格
word2vec
长短时记忆网络
分类器融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AWCRF模型的微博情感倾向分类方法
来源期刊 计算机工程 学科 工学
关键词 情感分析 情感分类 AffinityPropogation算法 欠采样技术 Word2vec技术 条件随机场
年,卷(期) 2017,(7) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 187-192
页数 6页 分类号 TP18
字数 6031字 语种 中文
DOI 10.3969/j.issn.1000-3428.2017.07.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郝志峰 广东工业大学计算机学院 166 940 14.0 20.0
3 蔡瑞初 广东工业大学计算机学院 66 279 10.0 13.0
4 温雯 广东工业大学计算机学院 48 272 10.0 14.0
5 陈炳丰 广东工业大学计算机学院 14 53 4.0 7.0
8 梁礼欣 广东工业大学计算机学院 2 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (216)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
情感分析
情感分类
AffinityPropogation算法
欠采样技术
Word2vec技术
条件随机场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导