基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人工检测谣言通常需要耗费大量的人力物力,并且会有很长的检测延迟.目前现存的谣言检测模型一般根据谣言的内容、用户属性、传播方式人工地构造特征,而人工构建特征存在考虑片面、浪费人力等现象.为了解决这个问题,提出了基于卷积神经网络(CNN)的谣言检测模型.将微博中的谣言事件向量化,通过卷积神经网络隐含层的学习训练来挖掘表示文本深层的特征,避免了特征构建的问题,并能发现那些不容易被人发现的特征,从而产生更好的效果.实验结果表明,所提方法能够准确识别谣言事件,在准确率、精确率与F1值指标上优于支持向量机(SVM)与循环神经网络(aNN)等对比算法.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的谣言检测
来源期刊 计算机应用 学科 工学
关键词 微博 谣言检测 谣言事件 卷积神经网络
年,卷(期) 2017,(11) 所属期刊栏目 第十六届中国机器学习会议(CCML 2017)
研究方向 页码范围 3053-3056,3100
页数 5页 分类号 TP391.41
字数 4130字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017.11.3053
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (276)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (39)
二级引证文献  (13)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(4)
  • 参考文献(0)
  • 二级参考文献(4)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(7)
  • 引证文献(4)
  • 二级引证文献(3)
2020(13)
  • 引证文献(3)
  • 二级引证文献(10)
研究主题发展历程
节点文献
微博
谣言检测
谣言事件
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
论文1v1指导