作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像处理作为一门涉及领域广且内容丰富的研究性学科,近些年来,呈现出迅猛发展势头.而作为拥有联想、自学习及自组织功能的神经网络理论,以在图像处理的诸多方面得到应用.本文分别从图像数据压缩、图像分割、图像分类与识别及图像增强等方面,探讨神经网络在图形处理中的应用,以期为此领域应用研究提供些许参考.
推荐文章
神经网络在图像处理中的应用
神经网络
图像重建
图像复原
图像增强
图像压缩
图像分割
特征提取
图像识别
模糊神经网络在图像目标检测中的应用
红外图像
微弱目标
自适应
目标检测
动态模糊神经网络
图像处理与神经网络识别技术在船舶分类中的应用
船舶识别
图像处理
神经网络
海上值班系统
BP神经网络在眼底造影图像分割中的应用
BP神经网络
图像分割
眼底造影图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络在图像处理中的应用
来源期刊 数字化用户 学科
关键词 神经网络 图像处理 应用
年,卷(期) 2017,(15) 所属期刊栏目 综合论坛
研究方向 页码范围 123
页数 1页 分类号
字数 1752字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林黎 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (17)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
神经网络
图像处理
应用
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字化用户
周刊
1009-0843
51-1567/TN
16开
四川省成都市
1999
chi
出版文献量(篇)
46696
总下载数(次)
249
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
数字化用户2017年第9期 数字化用户2017年第8期 数字化用户2017年第7期 数字化用户2017年第6期 数字化用户2017年第52期 数字化用户2017年第51期 数字化用户2017年第50期 数字化用户2017年第5期 数字化用户2017年第49期 数字化用户2017年第48期 数字化用户2017年第47期 数字化用户2017年第46期 数字化用户2017年第45期 数字化用户2017年第44期 数字化用户2017年第43期 数字化用户2017年第42期 数字化用户2017年第41期 数字化用户2017年第40期 数字化用户2017年第4期 数字化用户2017年第39期 数字化用户2017年第38期 数字化用户2017年第37期 数字化用户2017年第36期 数字化用户2017年第35期 数字化用户2017年第34期 数字化用户2017年第33期 数字化用户2017年第32期 数字化用户2017年第31期 数字化用户2017年第30期 数字化用户2017年第3期 数字化用户2017年第29期 数字化用户2017年第28期 数字化用户2017年第27期 数字化用户2017年第26期 数字化用户2017年第25期 数字化用户2017年第24期 数字化用户2017年第23期 数字化用户2017年第22期 数字化用户2017年第21期 数字化用户2017年第20期 数字化用户2017年第2期 数字化用户2017年第19期 数字化用户2017年第18期 数字化用户2017年第17期 数字化用户2017年第16期 数字化用户2017年第15期 数字化用户2017年第14期 数字化用户2017年第13期 数字化用户2017年第12期 数字化用户2017年第11期 数字化用户2017年第10期 数字化用户2017年第1期
论文1v1指导