基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A large number of ontologies have been introduced by the biomedical community in recent years. Knowledge discovery for entity identification from ontology has become an important research area, and it is always interesting to discovery how associations are established to connect concepts in a single ontology or across multiple ontologies. However, due to the exponential growth of biomedical big data and their complicated associations, it becomes very challenging to detect key associations among entities in an inefficient dynamic manner. Therefore, there exists a gap between the increasing needs for association detection and large volume of biomedical ontologies. In this paper, to bridge this gap, we presented a knowledge discovery framework, the BioBroker, for grouping entities to facilitate the process of biomedical knowledge discovery in an intelligent way. Specifically, we developed an innovative knowledge discovery algorithm that combines a graph clustering method and an indexing technique to discovery knowledge patterns over a set of interlinked data sources in an efficient way. We have demonstrated capabilities of the BioBroker for query execution with a use case study on a subset of the Bio2RDF life science linked data.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Heterogeneous Mg isotopic composition of the early Carboniferous limestone: implications for carbona
Seawater Mg isotopic composition
Limestone
Fossil
Micrite
Cement
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BioBroker: Knowledge Discovery Framework for Heterogeneous Biomedical Ontologies and Data
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 KNOWLEDGE DISCOVERY ONTOLOGY Linked DATA
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 1-20
页数 20页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KNOWLEDGE
DISCOVERY
ONTOLOGY
Linked
DATA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导