基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in regard to the K/T boundary throughout the last 40 years during progressive exploitation of glass sand. However, a clastic sequence of sand, mass flow and pelite deposited in a deep channel of about 10 - 12 m in depth, eroded into the glass sand, surprisingly shows an Upper Eocene/Lower Oligocene age, well defined by a Dinocyst assemblage (Chiripteridium c. galea, Enneado cysta arcuata, Areoligera tauloma = D 12na - D 14na) from a 0.5 meter thick pelite that marks the Rupelian transgression within an estuarian system running northwest/southeastward. The section exposes a high energy mass flow and formerly solid frozen angular glass sand blocks of up to a meter-size embedded in fluvial sand of the channel base. Furthermore, erratic clastics of up to 0.4 meter in diameter appear at the pelite base. The “unusual” Dinocyst assemblage is of autochthonous origin and comprises the fresh water alga Pediastrum Kawraiskyias indicator for cold climate, hitherto only known from Quaternary. Missing pollen indicate a vegetation-less hinterland. Thus, there cannot be any doubt that around the E/O b. at least one “rare event” has happened as verified by short tremendous flooding and significant temperature fall (“cosmic winter”). According to the attitude of the global impact scientific community, these phenomena belong to the spectrum of “indirect effects” of major impacts. Radiometric ages of relevant major impact events underline that both impact craters of Popigai, Russia (100 Kilometer in diameter, 35.7 Ma) and Chesabreake, USA (85 Kilometer in diameter, 35.5 Ma) happened shortly before the E/O b.(33.75 Ma). In addition, a tektite strewn field along the eastern coast of the USA and micro-tektites (Gulf of Mexico, Caribbean Sea, Barbados) yield an age of ~34.4 Ma, close to the E/O b. Consequently, t
推荐文章
Variability in distribution of major and trace elements in Lower Eocene siliceous sections of the Tr
Diatomite
Clayey diatomite
Irbit formation
Eocene
Geochemical variability
Constraints on sedimentary ages of the Chuanlinggou Formation in the Ming Tombs, Beijing, North Chin
Detrital zircon
LA-ICP-MS U–Pb ages
SHRIMP
Chuanlinggou Formation
Ancient sedimentary environment
North China Craton
Effects of carbon anhydrase on utilization of bicarbonate in microalgae: a case study in Lake Hongfe
Microalgae
Carbonic anhydrase
Stable carbon isotope
Inorganic carbon utilization
High oxygen fugacity magma: implication for the destruction of the North China Craton
High oxygen fugacity
Decratonization
North China Craton
Plate subduction
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 How to Trace out Impact-Triggered Effects Globally Scattered around Formation Boundaries: Case Uhry, North Germany (Eocene/Oligocene Boundary)
来源期刊 地质学期刊(英文) 学科 医学
关键词 Impact-Triggered Eocene/Oligocene BOUNDARY
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 9-32
页数 24页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Impact-Triggered
Eocene/Oligocene
BOUNDARY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地质学期刊(英文)
月刊
2161-7570
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
585
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导