基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.
推荐文章
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
MASK-OFDM跳频系统多址干扰分析
MASK-OFDM跳频
碰撞模式
误码率
干扰
The contribution of bacteria to organic matter in coal-measure source rocks
Coal-measure source rocks
Organic matter type
Bacteria
Monomethyl alkanes
Alkyl cyclohexane
基于Mask RCNN的绝缘子自爆缺陷检测
绝缘子
深度学习
Mask RCNN
自爆缺陷
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Compressive Sensing Approaches for Lithographic Source and Mask Joint Optimization
来源期刊 微电子制造学报 学科 工学
关键词 Computational LITHOGRAPHY SOURCE MASK optimization(SMO) COMPRESSIVE sensing(CS) INVERSE problem
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 6-12
页数 7页 分类号 TN
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Computational
LITHOGRAPHY
SOURCE
MASK
optimization(SMO)
COMPRESSIVE
sensing(CS)
INVERSE
problem
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子制造学报
季刊
2578-3769
北京市北土城西路3号中科院微电子研究所
出版文献量(篇)
47
总下载数(次)
0
论文1v1指导