基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Many researchers around the world are looking for developing techniques or technologies that cover traditional and recent constraints in urban traffic con-trol. Normally, such traffic devices are facing with a large scale of input data when they must to response in a reliable, suitable and fast way. Because of such statement, the paper is devoted to introduce a proposal for enhancing the traffic light decisions. The principal goal is that a semaphore can provide a correct and fluent vehicular mobility. However, the traditional semaphore operative ways are outdated. We present in a previous contribution the development of a methodology capable of improving the vehicular mobility by proposing a new green light interval based on road conditions with a CBR approach. However, this proposal should include whether it is needed to modify such light duration. To do this, the paper proposes the adaptation of a fuzzy inference system helping to decide when the semaphore should try to fix the green light interval according to specific road requirements. Some experiments are conducted in a simulated environment to evaluate the pertinence of implementing a decision-making before the CBR methodology. For example, using a fuzzy inference approach the decisions of the system improve almost 18% in a set of 10,000 experiments. Finally, some conclusions are drawn to emphasize the benefits of including this technique in a methodology to implement intelligent semaphores.
推荐文章
L-fuzzy格及(λ,μ)-fuzzy凸子格
L-fuzzy集
L-fuzzy格
(λ,μ)-fuzzy理想
(λ,μ)-fuzzy凸子格
BR0代数的Fuzzy理想与Fuzzy素理想
模糊逻辑
BR0代数
Fuzzy理想
Fuzzy素理想
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fuzzy Rules to Improve Traffic Light Decisions in Urban Roads
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Fuzzy INFERENCE SYSTEM URBAN TRAFFIC Control Vehicular MOBILITY Intelligent Transport SYSTEM
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 36-45
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Fuzzy
INFERENCE
SYSTEM
URBAN
TRAFFIC
Control
Vehicular
MOBILITY
Intelligent
Transport
SYSTEM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导