基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that effectively detects DDoS attacks appearing in any networked system using the clustering technique of data mining followed by classification. This method uses a Heuristics Clustering Algorithm (HCA) to cluster the available data and Na?ve Bayes (NB) classification to classify the data and detect the attacks created in the system based on some network attributes of the data packet. The clustering algorithm is based in unsupervised learning technique and is sometimes unable to detect some of the attack instances and few normal instances, therefore classification techniques are also used along with clustering to overcome this classification problem and to enhance the accuracy. Na?ve Bayes classifiers are based on very strong independence assumptions with fairly simple construction to derive the conditional probability for each relationship. A series of experiment is performed using “The CAIDA UCSD DDoS Attack 2007 Dataset” and “DARPA 2000 Dataset” and the efficiency of the proposed system has been tested based on the following performance parameters: Accuracy, Detection Rate and False Positive Rate and the result obtained from the proposed system has been found that it has enhanced accuracy and detection rate with low false positive rate.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DDoS Attack Detection Using Heuristics Clustering Algorithm and Naïve Bayes Classification
来源期刊 信息安全(英文) 学科 医学
关键词 DDoS ATTACKS HEURISTIC Clustering Algorithm Na?ve Bayes Classification CAIDA UCSD DARPA 2000
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 33-44
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DDoS
ATTACKS
HEURISTIC
Clustering
Algorithm
Na?ve
Bayes
Classification
CAIDA
UCSD
DARPA
2000
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
论文1v1指导