基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Despite a wealth of experimental studies focused on determining and improving mechanical properties and development of fundamental understanding of underlying mechanisms behind nucleation and growth of ductile phase precipitates from melt in glassy matrix, still, there is dearth of knowledge about how these ductile phases nucleate during solidification. Various efforts have been made to address this problem such as experiments in microgravity, high resolution electron microscopy and observation in synchrotron light after levitation but none have proved out to be satisfactory. In this study, an effort has been made to address this problem by modelling and simulation. Current state of the art of development, manufacturing, characterisation and modelling and simulation of bulk metallic glass matrix composites is described in detail. Evolution of microstructure in bulk metallic glass matrix composites during solidification in additive manufacturing has been presented with the aim to address fundamental problem of evolution of solidification microstructure as a result of solute partitioning, diffusion and capillary action. An overview is also presented to explain the relation of microstructure evolution to hardness and fracture toughness. This is aimed at overcoming fundamental problem of lack of ductility and toughness in this diverse class of materials. Quantitative prediction of solidification microstructure is done with the help of advanced part scale modelling and simulation techniques. It has been systematically proposed that 2-dimensional cellular automaton (CA) method combined with finite element (for thermal modelling) tools (CA-FE) programmed on FORTRAN? and parallel simulated on ABAQUS? would best be able to describe this complicated multiphysics phenomenon in most efficient way. Focus is laid on quantification of methodology by which modelling and simulation can be adopted and applied to describe evolution of microstructure in this important class of materials. It is found that proposed methodology is meri
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Modelling and Simulation of Solidification Phenomena during Additive Manufacturing of Bulk Metallic Glass Matrix Composites (BMGMC)—A Brief Review and Introduction of Technique
来源期刊 封装与吸附期刊(英文) 学科 医学
关键词 SOLIDIFICATION MODELLING and Simulation Cellular AUTOMATON
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 67-116
页数 50页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOLIDIFICATION
MODELLING
and
Simulation
Cellular
AUTOMATON
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
封装与吸附期刊(英文)
季刊
2161-4865
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
103
总下载数(次)
0
总被引数(次)
0
论文1v1指导