基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A Machine Learning (ML)-based Intrusion Detection and Prevention System (IDPS)requires a large amount of labeled up-to-date training data to effectively detect intrusions and generalize well to novel attacks.However,the labeling of data is costly and becomes infeasible when dealing with big data,such as those generated by Intemet of Things applications.To this effect,building an ML model that learns from non-labeled or partially labeled data is of critical importance.This paper proposes a Semi-supervised Mniti-Layered Clustering ((SMLC))model for the detection and prevention of network intrusion.SMLC has the capability to learn from partially labeled data while achieving a detection performance comparable to that of supervised ML-based IDPS.The performance of SMLC is compared with that of a well-known semi-supervised model (tri-training)and of supervised ensemble ML models, namely Random.Forest,Bagging,and AdaboostM1on two benchmark network-intrusion datasets,NSL and Kyoto 2006+.Experimental resnits show that SMLC is superior to tri-training,providing a comparable detection accuracy with 20%less labeled instances of training data.Furthermore,our results demonstrate that our scheme has a detection accuracy comparable to that of the supervised ensemble models.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Semi-supervised multi-layered clustering model for intrusion detection
来源期刊 数字通信与网络:英文版 学科 工学
关键词 SEMI-SUPERVISED INTRUSION detection MACHINE learning Classification ENSEMBLES BIG data
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 277-286
页数 10页 分类号 TN
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SEMI-SUPERVISED
INTRUSION
detection
MACHINE
learning
Classification
ENSEMBLES
BIG
data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络:英文版
季刊
2468-5925
50-1212/TN
重庆南岸区崇文路2号重庆邮电大学数字通信
78-45
出版文献量(篇)
11481
总下载数(次)
2
总被引数(次)
0
论文1v1指导