基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the last decade, a large amount of data has been published in different fields and can be used as a data source for research and study. However, identifying a specific type of data requires processing, which involves machine learning classifying techniques. To facilitate this, we propose a general framework that can be applied to any social media content to develop an intelligent system. The framework consists of three main parts: an interface, classifier and ana-lyzer. The analyzer uses media recognition to identify specific features. Then, the classifier uses these features and involves them in the classification process. The interface organizes the interaction between the system compo-nents. We tested the framework and developed a system to be applied to im-age-based social media networks (Instagram). The system was implemented as a mobile application (My Interests) that works as a recommendation and filtering system for Instagram users and reduces the time they spend on irre-levant information. It analyzes the images, categorizes them, identifies the in-teresting ones, and finally, reports the results. We used the Cloud Vision API as a tool to analyze the images and extract their features. Furthermore, we adapted support vector machine (SVM), a machine learning method, to classify images and to predict the preferred ones.
推荐文章
基于Java Media Framework的实时音/视频通信
JMF
RTP
实时通信
音/视频流
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
Real与Media流媒体技术比较
Real
Media
流媒体
比较
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Framework to Classify and Analyze Social Media Content
来源期刊 社交网络(英文) 学科 医学
关键词 FRAMEWORK Classification SOCIAL Media Network SUPPORT VECTOR MACHINE MACHINE Learning My INTEREST
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 79-88
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FRAMEWORK
Classification
SOCIAL
Media
Network
SUPPORT
VECTOR
MACHINE
MACHINE
Learning
My
INTEREST
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
论文1v1指导