基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Bioethanol is an important product in the fuel market obtainable from biomass through fermentation process but direct conversion of cassava peelings to bioethanol as energy by-product is difficult because of its lignocellulosic content. This paper therefore, considers the intermediate route of converting lignocellulosic biomass to fermentable sugar through acid hydrolysis and consequent ethanol production, in a developed percolation reactor. Cassava tuber consists of the starchy flesh and peelings that can be converted into bioethanol but the main agro-waste from cassava crop, aside from the leaves and stem is the peelings. The level of cultivating of the crop in Nigeria is exceptionally high as practised in other developing nations, yet there is no significant use for its peelings which is generated in thousands of metric tonnes annually. Therefore, apercolation reactor is designed for the thermochemical pre-treatment of the lignocellulosic biomass through hydrolysis process with a view to recovering the reducing sugars for fermentation. The reactor is designed to hold 2 kg of pulverised cassava peelings of 0.5≤ and ≥0.3 mm particle size and circulate 3 L of acid liquor for each hydrolysis run. The reactor comprised of a 0.0261 m3 perforated basket, 1.83 W capacity circulation pump in power rating, and a heating chamber containing 3 kW heater. The reactor is designed to operate within the temperature range of 20°C - 180°C, pressure ≤ 45 Nm?2, and liquor flow rate of 4.33 × 10?4 m3·S?1. The reactor was used to convert 500 g of pulverised cassava peelings to sugar laden hydrolysate that subsequently yielded 118 mL of bioethanol through fermentation process in three replicated experiments. The designed percolation reactor could therefore serve as a veritable tool in converting biomass of lignocellulosic origin to chemical and energy products, reduce wastes and promote cleaner environment.
推荐文章
Methane production from rice straw carbon in five different methanogenic rice soils: rates, quantiti
13C-labeled rice straw
Methane production
Rice field soil
Microbial community
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Production of Ethanol from Cassava Peelings Using a Developed Percolation Reactor
来源期刊 可持续生物质能源系统(英文) 学科 医学
关键词 CASSAVA PEELING Percolationreactor HYDROLYSIS BIOETHANOL
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 107-115
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CASSAVA
PEELING
Percolationreactor
HYDROLYSIS
BIOETHANOL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可持续生物质能源系统(英文)
季刊
2165-400X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
144
总下载数(次)
0
总被引数(次)
0
论文1v1指导