基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Network is considered naturally as a wide range of different contexts, such as biological systems, social relationships as well as various technological scenarios. Investigation of the dynamic phenomena taking place in the network, determination of the structure of the network and community and description of the interactions between various elements of the network are the key issues in network analysis. One of the huge network structure challenges is the identification of the node(s) with an outstanding structural position within the network. The popular method for doing this is to calculate a measure of centrality. We examine node centrality measures such as degree, closeness, eigenvector, Katz and subgraph centrality for undirected networks. We show how the Katz centrality can be turned into degree and eigenvector centrality by considering limiting cases. Some existing centrality measures are linked to matrix functions. We extend this idea and examine the centrality measures based on general matrix functions and in particular, the logarithmic, cosine, sine, and hyperbolic functions. We also explore the concept of generalised Katz centrality. Various experiments are conducted for different networks generated by using random graph models. The results show that the logarithmic function in particular has potential as a centrality measure. Similar results were obtained for real-world networks.
推荐文章
Role of hydro-geochemical functions on karst critical zone hydrology for sustainability of water res
Hydro-geochemical analysis
Karst critical zone
Water resources
Vegetation Southwest China
基于Reed-Solomon算法的Data Matrix条码纠错码的研究
Data Matrix码
伽罗华域
Reed-Solomon算法
纠错码
基于PC-Based的TwinCAT数据接口研究
PC-Bases
TwinCAT 接口
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Centrality Measures Based on Matrix Functions
来源期刊 离散数学期刊(英文) 学科 数学
关键词 GRAPH CENTRALITY Measures Matrix FUNCTIONS Kendall Correlation COEFFICIENT RANDOM GRAPH MODELS
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 79-115
页数 37页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GRAPH
CENTRALITY
Measures
Matrix
FUNCTIONS
Kendall
Correlation
COEFFICIENT
RANDOM
GRAPH
MODELS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
离散数学期刊(英文)
季刊
2161-7635
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
160
总下载数(次)
0
总被引数(次)
0
论文1v1指导