作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A good machine learning model would greatly contribute to an accurate crime prediction. Thus, researchers select advanced models more frequently than basic models. To find out whether advanced models have a prominent advantage, this study focuses shift from obtaining crime prediction to on comparing model performance between these two types of models on crime prediction. In this study, we aimed to predict burglary occurrence in Los Angeles City, and compared a basic model just using prior year burglary occurrence with advanced models including linear regressor and random forest regressor. In addition, American Community Survey data was used to provide neighborhood level socio-economic features. After finishing data preprocessing steps that regularize the dataset, recursive feature elimination was utilized to determine the final features and the parameters of the two advanced models. Finally, to find out the best fit model, three metrics were used to evaluate model performance: R squared, adjusted R squared and mean squared error. The results indicate that linear regressor is the most suitable model among three models applied in the study with a slightly smaller mean squared error than that of basic model, whereas random forest model performed worse than the basic model. With a much more complex learning steps, advanced models did not show prominent advantages, and further research to extend the current study were discussed.
推荐文章
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparison of Model Performance for Basic and Advanced Modeling Approaches to Crime Prediction
来源期刊 智能信息管理(英文) 学科 医学
关键词 CRIME Prediction RECURSIVE FEATURE ELIMINATION BENCHMARK Model Linear Regressor Random FOREST Regressor
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 123-132
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CRIME
Prediction
RECURSIVE
FEATURE
ELIMINATION
BENCHMARK
Model
Linear
Regressor
Random
FOREST
Regressor
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能信息管理(英文)
半月刊
2160-5912
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
114
总下载数(次)
0
论文1v1指导