基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Agents interactions in a social network are dynamic and stochastic. We model the dynamic interactions using the hidden Markov model, a probability model which has a wide array of applications. The transition matrix with three states, forgetting, reinforcement and exploration is estimated using simulation. Singular value decomposition estimates the observation matrix for emission of low, medium and high interaction rates. This is achieved when the rank approximation is applied to the transition matrix. The initial state probabilities are then estimated with rank approximation of the observation matrix. The transition and the observation matrices estimate the state and observed symbols in the model. Agents interactions in a social network account for between 20% and 50% of all the activities in the network. Noise contributes to the other portion due to interaction dynamics and rapid changes observable from the agents transitions in the network. In the model, the interaction proportions are low with 11%, medium with 56% and high with 33%. Hidden Markov model has a strong statistical and mathematical structure to model interactions in a social network.
推荐文章
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
Discrimination geochemical interaction effects on mineralization at the polymetallic Glojeh deposit,
Backward Elimination
Quadratic polynomial model
Miniature-scale changes
Ordinal–disordinal interaction effect
Akima's polynomial contour map
Immobile element
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Interaction Dynamics in a Social Network Using Hidden Markov Model
来源期刊 社交网络(英文) 学科 医学
关键词 AGENTS INTERACTIONS SOCIAL Network Hidden MARKOV Model SINGULAR Value DECOMPOSITION
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 147-155
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AGENTS
INTERACTIONS
SOCIAL
Network
Hidden
MARKOV
Model
SINGULAR
Value
DECOMPOSITION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
论文1v1指导