基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
There are some scenarios that need group recommendation such as watching a movie or a TV series,selecting a tourist destination,or having dinner together.Approaches in this domain can be divided into two categories:Creating group profiles and aggregating individual recommender list.Yet none of the above methods can handle the online group recommendation both efficiently and accurately and these methods either strongly limited by their application environment,or bring bias towards those users having limited connections with this group.In this work,we propose a local optimization framework,using sub-group profiles to compute the item relevance.Such method can captures and removes the bias existed in the traditional group recommendation algorithms in a certain degree.It can then be used to derive single-user recommendation.We also propose an approach to overcome the problem caused by dynamic change or user updating about his social network,which detects the target user’s group by analyzing the link types between he and his neighbours,and then use the group information to generate his recommendations.Experimental analysis for group and personal recommendation on three different sizes of MovieLens datasets show fairly good results,our method consistently outperform several state-of-the-arts in efficiency.And we also provide the explanations behind the phenomena during the experiments.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Online Group Recommendation with Local Optimization
来源期刊 工程与科学中的计算机建模(英文) 学科 工学
关键词 GROUP RECOMMENDATION LOCAL optimization SOCIAL network
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 217-231
页数 15页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GROUP
RECOMMENDATION
LOCAL
optimization
SOCIAL
network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导