基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
示功图是判别往复压缩机气缸部分工作性能和运行状况的重要依据,与机体表面振动分析方法相比,其特征机理明确,能够从更深层次上诊断往复压缩机故障.针对往复压缩机示功图的特征提取问题,提出一种基于平面图形几何性质的示功图特征定量描述方法,为了验证所提方法的有效性,分别提取了往复压缩机气阀4种常见状态下示功图的几何性质参数和振动信号的时域统计指标作为特征向量,利用BP神经网络作为分类器进行训练和测试的对比分析.结果表明,所提方法对气阀故障的识别率达到了100%,因此该方法能够有效提取往复压缩机的异常特征,可以提高往复压缩机气缸部分在线状态监测与故障诊断的准确率.
推荐文章
基于RBF神经网络的往复压缩机气阀故障诊断
往复压缩机气阀
故障诊断
RBF神经网络
基于LM-BP神经网络的气阀故障诊断方法
Levenberg-Marquardt算法
BP神经网络
多级往复式压缩机
气阀故障
天然气往复压缩机气阀故障分析及诊断
往复压缩机
气阀
故障
诊断
基于模糊聚类的油田往复压缩机气阀故障诊断研究
往复式压缩机
故障诊断
模糊聚类
故障特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于示功图几何性质与神经网络的往复压缩机气阀故障诊断
来源期刊 压缩机技术 学科 工学
关键词 示功图 往复压缩机 气阀 几何性质 故障诊断
年,卷(期) 2018,(1) 所属期刊栏目 设计研究
研究方向 页码范围 7-12
页数 6页 分类号 TH457
字数 2827字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘树林 上海大学机电工程与自动化学院 54 297 9.0 14.0
2 唐友福 东北石油大学机械科学与工程学院 23 69 3.0 7.0
3 王磊 东北石油大学机械科学与工程学院 19 59 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (32)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
示功图
往复压缩机
气阀
几何性质
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
压缩机技术
双月刊
1006-2971
21-1176/TH
16开
沈阳市经济技术开发区开发大路16号甲
8-70
1963
chi
出版文献量(篇)
2250
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导