基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
For the first time, functioning of the planetary climate system is considered in terms of the self-organization laws with account of positive and negative feedbacks. It is shown that the maximum risks in the development of positive feedbacks that can lead the climate system to a planetary catastrophe, are associated with an unprecedented increase in the concentration of methane in the atmosphere. Over the last 30 years, its concentration in the atmosphere has increased by 2.5 times and continues to grow exponentially. In this review, we show that today the principal source for increase of methane concentration in the atmosphere is the self-accelerating decomposition of methane hydrates in the cryosphere of the Northern Hemisphere. In the history of the Earth, the emissions of methane into the atmosphere due to mass decomposition of methane hydrates led to climate-induced biosphere catastrophes. Paleo-reconstruction analysis of greenhouse gas concentrations in the atmosphere and its temperature over the last 420,000 years has allowed us to conclude that the self-organizing planetary climate system is currently in a state of dynamic chaos (close to the bifurcation point). This means that even a relatively weak impact on it, also of anthropogenic characters, is able to affect the planetary climate system to select its future development trajectory.
推荐文章
Methane production from rice straw carbon in five different methanogenic rice soils: rates, quantiti
13C-labeled rice straw
Methane production
Rice field soil
Microbial community
The influence of climate and topography on chemical weathering of granitic regoliths in the monsoon
Granitic regolith
Chemical weathering
Supply-limited weathering
Kinetic-limited weathering
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Role of Methane and Methane Hydrates in the Evolution of Global Climate
来源期刊 美国气候变化期刊(英文) 学科 医学
关键词 Greenhouse Effect Decomposition of METHANE HYDRATES PERMAFROST BIOSPHERE CATASTROPHE SELF-REGULATION in the Global Climate System
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 236-252
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Greenhouse
Effect
Decomposition
of
METHANE
HYDRATES
PERMAFROST
BIOSPHERE
CATASTROPHE
SELF-REGULATION
in
the
Global
Climate
System
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国气候变化期刊(英文)
季刊
2167-9495
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
95
总下载数(次)
0
总被引数(次)
0
论文1v1指导