基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Are spatial distributions of major elements in soil influenced by human landscapes?
Major elements
Spatial distribution
Geographical background
Human landscape
Geographic information system
Remote sensing
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Object-Based Classification of Urban Distinct Sub-Elements Using High Spatial Resolution Orthoimages and DSM Layers
来源期刊 地理信息系统(英文) 学科 医学
关键词 OBJECT-ORIENTED Classification Real Time KINEMATICS DSM UAV Orthoimages MOSAIC URBAN DISTINCT Sub-Elements
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 323-343
页数 21页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
OBJECT-ORIENTED
Classification
Real
Time
KINEMATICS
DSM
UAV
Orthoimages
MOSAIC
URBAN
DISTINCT
Sub-Elements
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理信息系统(英文)
半月刊
2151-1950
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
143
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导