基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
New strategies are required in the sugarcane selection process to optimize the genetic gains in breeding programs. Conventional selection strategies have the disadvantage of requiring the weighing of all the plants in a plot or a sample of stalks and the counting of the number of stalks in all the experimental plots, which cannot always be performed because more than 200,000 genotypes routinely comprise the first test phase (T1) of most sugarcane breeding programs. One way to circumvent this problem is to use decision trees to rank the yield components (the stalk height, the stalk diameter and the number of stalks) and to subsequently use this categorization to select the best families for a specific trait. The objective of this study was to evaluate the categorization of yield components using the classification and regression tree (CART) algorithm as a family selection strategy by comparing the performance of CART with those of conventional methods that require the weighing of stalks, such as the best linear unbiased prediction (BLUP) with sequential (BLUPS) or individual simulated (BLUPIS) procedures. Data from five experiments performed in May 2007 in a randomized block design were analyzed. Each experiment consisted of five blocks, 22 families and two controls (commercial varieties). CART effectively defined the classes of the yield components and selected the best families with an accuracy of 74% compared to BLUPS and BLUPIS. Families with at least 11 stalks per linear meter of furrow resulted in productivities that were above the average productivity of the commercial varieties used in this study and are, therefore, recommended for selection.
推荐文章
标准SQL语言中Select语句模糊扩展
SQL语言
Select语句
模糊扩展
一个面向对象的扩展Select语句的设计与实现
面向对象数据模型
扩展select语句
对象引用
Y-TOOL生产井联合测井与剩余油分布定量评价
产液剖面测井
过套管电阻率测井
潜油电泵
水淹层
剩余油分布
脉冲中子-中子测井
定量评价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Decision Trees as a Tool to Select Sugarcane Families
来源期刊 美国植物学期刊(英文) 学科 医学
关键词 Statistical LEARNING Plant BREEDING SACCHARUM Spp. Synthetic Data Supervised LEARNING
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 216-230
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Statistical
LEARNING
Plant
BREEDING
SACCHARUM
Spp.
Synthetic
Data
Supervised
LEARNING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国植物学期刊(英文)
月刊
2158-2742
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1814
总下载数(次)
0
总被引数(次)
0
论文1v1指导