基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The increasing volume of data in the area of environmental sciences needs analysis and interpretation. Among the challenges generated by this “data deluge”, the development of efficient strategies for the knowledge discovery is an important issue. Here, statistical and tools from computational intelligence are applied to analyze large data sets from meteorology and climate sciences. Our approach allows a geographical mapping of the statistical property to be easily interpreted by meteorologists. Our data analysis comprises two main steps of knowledge extraction, applied successively in order to reduce the complexity from the original data set. The goal is to identify a much smaller subset of climatic variables that might still be able to describe or even predict the probability of occurrence of an extreme event. The first step applies a class comparison technique: p-value estimation. The second step consists of a decision tree (DT) configured from the data available and the p-value analysis. The DT is used as a predictive model, identifying the most statistically significant climate variables of the precipitation intensity. The methodology is employed to the study the climatic causes of an extreme precipitation events occurred in Alagoas and Pernambuco States (Brazil) at June/2010.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Data Mining for Flooding Episode in the States of Alagoas and Pernambuco—Brazil
来源期刊 美国气候变化期刊(英文) 学科 医学
关键词 Data Mining Statistical Analysis T-TEST P-VALUE Artificial INTELLIGENCE Decision Tree
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 420-430
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Data
Mining
Statistical
Analysis
T-TEST
P-VALUE
Artificial
INTELLIGENCE
Decision
Tree
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国气候变化期刊(英文)
季刊
2167-9495
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
95
总下载数(次)
0
总被引数(次)
0
论文1v1指导