基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对翻录语音攻击说话人识别系统,危害合法用户的权益问题,提出了一种基于卷积神经网络(CNN)的翻录语音检测算法.首先,通过提取原始语音与翻录语音的语谱图,并将其输入到卷积神经网络中,对其进行特征提取及分类;然后,搭建了适应于检测翻录语音的网络框架,分析讨论了输入不同窗移的语谱图对检测率的影响;最后,对不同偷录及回放设备的翻录语音进行了交叉实验检测,并与现有的经典算法进行了对比.实验结果表明,所提方法能够准确地判断待测语音是否为翻录语音,其识别率达到了99.26%,与静音段梅尔频率倒谱系数(MFCC)算法、信道模式噪声算法和长时窗比例因子算法相比,识别率分别提高了约26个百分点、21个百分点和0.35个百分点.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的翻录语音检测算法
来源期刊 计算机应用 学科 工学
关键词 卷积神经网络 翻录语音检测 语谱图 录音设备 网络框架
年,卷(期) 2018,(1) 所属期刊栏目 2017年全国开放式分布与并行计算学术年会(DPCS 2017)论文
研究方向 页码范围 79-83
页数 5页 分类号 TP391|TP309.2
字数 5650字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017071896
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王让定 宁波大学信息科学与工程学院 143 1262 17.0 29.0
2 严迪群 宁波大学信息科学与工程学院 40 91 5.0 6.0
3 李璨 宁波大学信息科学与工程学院 4 14 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (11)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (11)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
翻录语音检测
语谱图
录音设备
网络框架
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
论文1v1指导