基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The use of Nifedipine (NI), a dihydropyridine calcium channel blocker, is limited due to its poor aqueous solubility. However, NI loaded solid-lipid nanoparticles (NI-SLN) are known to exhibit suitable pharmacokinetic properties and good biocompatibility. The present investigation was designed to evaluate the effects of NI-SLN on glucose homeostasis, lipid metabolism and liver function in fructose-induced diabetic rats. NI-SLN was prepared by high pressure homogenization technique followed by lyophilization with trehalose as cryoprotectant. Diabetes was induced into rats by the administration of fructose (10%) in drinking water for six weeks. After induction of diabetes, rats were divided into four groups for the oral ingestion of NI, NI-SLN and/or vehicles and their effects on blood glucose levels, oral glucose tolerance test (OGTT), lipid profile, biochemical parameters, electrolytes and histopathology were observed. Single dose administration and treatment with NI-SLN showed significant glucose lowering efficacy in fructose-induced diabetic rats. Although NI and NI-SLN did not alter the fasting blood glucose level in normal rats, diabetic rats treated with NI-SLN resulted in significant reduction in glucose level for 24 hr. In OGTT, NI-SLN exhibited significant antihyperglycemic activity in both normal and diabetic rats. So, NI-SLN has better glucose lowering efficacy than that of pure NI in diabetic rats. The survival rates in rats among the treatment groups were 100%. Treatment with NI-SLN significantly improved lipid profiles than NI alone and the effect was dose-dependent. Administration of NI-SLN significantly reduced uric acid, creatinine levels and maintained a good cationic balance. After two weeks of NI-SLN treatment, hepatocytes regained their normal architecture, and the beneficial effect could be correlated with the reduction of SGOT and total bilirubin levels. Therefore, NI-SLN was found to be useful for the enhancement of bioavailability and exhibited profound antidiabetic activity in rats. The r
推荐文章
The effect of pH on the sorption of gold nanoparticles on illite
Gold nanoparticles
Illite
Sorption
Charge
Electrostatic interaction
以Lipid A为靶点拮抗内毒素中药的筛选
内毒素
脂质A
生物传感器
中药
筛选
Synthesis of zinc oxide–montmorillonite composite and its effect on the removal of aqueous lead ions
Synthesis
Characterization
Zinc oxide–montmorillonite composite
Adsorption, Pb2+ ions
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Preparation and Antidiabetic Effect of Orally Administered Nifedipine‐Loaded Solid Lipid Nanoparticles in Fructose-Induced Diabetic Rats
来源期刊 药理与制药(英文) 学科 医学
关键词 FORMULATION Solid LIPID Nanoparticle Calcium Channel BLOCKER NIFEDIPINE FRUCTOSE Diabetes
年,卷(期) 2018,(10) 所属期刊栏目
研究方向 页码范围 457-471
页数 15页 分类号 R5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FORMULATION
Solid
LIPID
Nanoparticle
Calcium
Channel
BLOCKER
NIFEDIPINE
FRUCTOSE
Diabetes
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
药理与制药(英文)
月刊
2157-9423
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
444
总下载数(次)
0
总被引数(次)
0
论文1v1指导