基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Post-translational modification (PTM) increases the functional diversity of proteins by introducing new functional groups to the side chain of amino acid of a protein. Among all amino acid residues, the side chain of lysine (K) can undergo many types of PTM, called K-PTM, such as “acetylation”, “crotonylation”, “methylation” and “succinylation” and also responsible for occurring multiple PTM in the same lysine of a protein which leads to the requirement of multi-label PTM site identification. However, most of the existing computational methods have been established to predict various single-label PTM sites and a very few have been developed to solve multi-label issue which needs further improvement. Here, we have developed a computational tool termed mLysPTMpred to predict multi-label lysine PTM sites by 1) incorporating the sequence-coupled information into the general pseudo amino acid composition, 2) balancing the effect of skewed training dataset by Different Error Cost method, and 3) constructing a multi-label predictor using a combination of support vector machine (SVM). This predictor achieved 83.73% accuracy in predicting the multi-label PTM site of K-PTM types. Moreover, all the experimental results along with accuracy outperformed than the existing predictor iPTM-mLys. A user-friendly web server of mLysPTMpred is available at http://research.ru.ac.bd/mLysPTMpred/.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 mLysPTMpred: Multiple Lysine PTM Site Prediction Using Combination of SVM with Resolving Data Imbalance Issue
来源期刊 自然科学期刊(英文) 学科 医学
关键词 MULTI-LABEL PTM Site Predictor Sequence-Coupling Model General PseAAC DATA IMBALANCE ISSUE Different Error Costs Support Vector Machine
年,卷(期) 2018,(9) 所属期刊栏目
研究方向 页码范围 370-384
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTI-LABEL
PTM
Site
Predictor
Sequence-Coupling
Model
General
PseAAC
DATA
IMBALANCE
ISSUE
Different
Error
Costs
Support
Vector
Machine
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
总被引数(次)
0
论文1v1指导