原文服务方: 现代电子技术       
摘要:
为了提高电力变压器故障诊断的准确率,提出一种基于改进粒子群算法(PSO)优化SVM的变压器故障诊断方法.在对变压器故障进行诊断时采用支持向量机(SVM)与油中溶解气体分析(DGA)相结合的方法,利用PSO对SVM故障诊断模型进行参数寻优,并通过模拟退火算法(SA)改进PSO以提高PSO算法的全局搜索能力.对电力变压器故障诊断的实例分析结果表明,该方法不仅能够有效地进行变压器故障诊断,而且准确率高于传统的变压器故障诊断方法,更适合在变压器故障诊断中应用.
推荐文章
基于改进PSO-SVM算法的油浸式变压器故障诊断
粒子群算法
支持向量机
变压器
故障诊断
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
PSO-IGWO优化混合KELM的变压器故障诊断方法
变压器
故障诊断
粒子群优化
灰狼优化
混合核极限学习机
智能电网
基于改进粒子群优化XGBoost的变压器故障诊断方法
变压器
故障诊断
极端梯度提升
粒子群算法
无编码比值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于变压器DGA故障诊断的改进PSO优化SVM算法研究
来源期刊 现代电子技术 学科
关键词 变压器 故障诊断 DGA 模拟退火算法 粒子群优化算法 SVM
年,卷(期) 2018,(15) 所属期刊栏目 电子技术及应用
研究方向 页码范围 124-128
页数 5页 分类号 TN99-34|TP183
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2018.15.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕小毅 新疆大学信息科学与工程学院 25 39 4.0 4.0
2 莫家庆 新疆大学信息科学与工程学院 13 17 3.0 3.0
6 闵亚琪 新疆大学信息科学与工程学院 1 3 1.0 1.0
7 马鑫 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (152)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(13)
  • 参考文献(1)
  • 二级参考文献(12)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(13)
  • 参考文献(2)
  • 二级参考文献(11)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导