Though several maize varieties have been developed and introduced over the years in Ghana, farmers still face challenges of access to quality seed maize. Among the major constraint is lack of proper drying systems to guarantee quality of seed produced. As in most parts of Africa, drying of maize in the open, on bare ground along shoulders of roads is still a common practice in Ghana. In this study, a 5-tonne capacity hybrid solar biomass dryer was developed for drying maize for seed and food/feed in Ghana. Effect of air temperature in the dryer on the physiological quality and germination of maize kernels was investigated. Maize grains were dried in the open sun simulating farmers practice and using the dryer at 4 varying levels (L1, L2, L3 and L4) with corresponding heights (0.6 m, 1.2 m, 1.8 m and 2.4 m, respectively) from the ground. Harvested maize at 22.8% moisture content was dried at the varying levels until reaching the final desired moisture content of 12.8% ± 0.2% (wb). Results showed that, air temperatures in the dryer increased in accordance with height with lowest mean temperature of 44.4°C ± 4.6°C recorded at L1 and mean maximum of 52.8°C ± 5.4°C at L4. Drying temperatures recorded at L1 - L3 and ambient had no significant effect (p < 0.05) on kernel damage and viability. Drying conditions at L1-L3 were considered optimum (<50°C) for kernel drying compared to the topmost tray, L4. Kernel stress crack index (multiple and checked) was therefore reduced on average by 14% while kernel germination increased by 33%. This satisfies the dryer’s potential to be used for commercial drying of maize grains for seed production for smallholder farmers in Ghana.