基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前监督学习算法在流形数据集上分类性能的缺陷,如分类精度低且稀疏性有限,本文在稀疏贝叶斯方法和流行正则化框架的基础上,提出一种稀疏流形学习算法(Manifold Learning Based on Sparse Bayesian Approach,MLSBA).该算法是对稀疏贝叶斯模型的扩展,通过在模型的权值上定义稀疏流形先验,有效利用了样本数据的流形信息,提高了算法的分类准确率.在多种数据集上进行实验,结果表明:MLSBA不仅在流形数据集上取得良好的分类性能,而且在非流形数据集上效果也比较好;同时算法在两类数据集上均具有良好的稀疏性能.
推荐文章
稀疏回归和流形学习的无监督特征选择算法
无监督学习
特征选择
稀疏回归
特征流形学习
基于贝叶斯网络理论的道德图学习
贝叶斯网络
道德图
马尔可夫网络
非及物依赖
诱发依赖
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏贝叶斯的流形学习
来源期刊 电子学报 学科 工学
关键词 拉普拉斯 稀疏贝叶斯 稀疏流形先验 流形正则化
年,卷(期) 2018,(1) 所属期刊栏目 学术论文
研究方向 页码范围 98-103
页数 6页 分类号 TP391
字数 5498字 语种 中文
DOI 10.3969/j.issn.0372-2112.2018.01.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈兵飞 中国科学技术大学计算机科学与技术学院 1 1 1.0 1.0
2 江兵兵 中国科学技术大学计算机科学与技术学院 2 3 1.0 1.0
3 周熙人 中国科学技术大学计算机科学与技术学院 2 1 1.0 1.0
4 陈欢欢 中国科学技术大学计算机科学与技术学院 9 92 2.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (25)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
拉普拉斯
稀疏贝叶斯
稀疏流形先验
流形正则化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导