原文服务方: 现代电子技术       
摘要:
遗传神经网络与激光诱导击穿光谱技术(LIBS)相结合的方法能够更好地对钢液成分进行定量分析检测.建立基于遗传算法为核心的三层误差反向传播(BP)分析模型,由于BP网络的初始权值和阈值是随机数,因此存在收敛速度慢、不能保证收敛全局最优解等缺点,而遗传算法能够优化出最佳的初始权值和阈值,可以较好地克服这些问题.网络的输入选取几种元素的峰值强度与Fe元素的峰值强度进行峰值归一化处理;网络的输出为元素浓度.构建遗传神经网络定量分析模型对钢液中的Mn元素进行定量分析,得到相对标准差(RSD)为7.46%,相关系数为0.996.实验结果表明,遗传神经网络结合LIBS技术相比传统LIBS定标分析法检测的结果精确度有了一定提高.
推荐文章
基于遗传神经网络的汽车回收逆向物流综合评价
汽车回收
逆向物流
层次分析法
遗传算法
神经网络
综合评价
基于遗传神经网络的入侵检测
入侵检测
神经网络
遗传算法
网络安全
基于遗传神经网络的入侵检测方法研究
BP神经网络
遗传算法
遗传神经网络
入侵检测
基于遗传神经网络成绩预测的研究与实现
成绩预测
BP神经网络
遗传算法
Matlab
Java
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 遗传神经网络结合LIBS技术对钢液Mn元素定量分析
来源期刊 现代电子技术 学科
关键词 光谱学 激光诱导击穿光谱技术 实验装置 神经网络 遗传算法 定量分析
年,卷(期) 2018,(15) 所属期刊栏目 测控与自动化技术
研究方向 页码范围 169-173
页数 5页 分类号 TN247-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2018.15.038
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马翠红 华北理工大学电气工程学院 60 91 5.0 7.0
2 赵士超 华北理工大学电气工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (80)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(21)
  • 参考文献(2)
  • 二级参考文献(19)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光谱学
激光诱导击穿光谱技术
实验装置
神经网络
遗传算法
定量分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导