基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前船舶交通流量预测手段落后,精度不高的问题,利用宝船网A PI数据接口提取船舶A IS数据,依托该数据构建基因算法优化神经网络的船舶交通流量预测模型,K近邻回归预测模型、时间序列预测模型和灰色预测模型的组合预测模型.通过自编程序采集了天津港某时段的船舶交通流量数据,在剔除错误和不可用数据后,对船舶交通流量数据进行统计,分析得到了进出天津港的船舶航行特性.同时为了更直观的验证所提出的预测模型效果,与利用K近邻回归、时间序列和灰色预测模型3种方法预测的结果进行对比.组合模型进港预测的平均绝对误差、均方误差和平均相对误差分别是0.5595,1.0119和12.98%,出港分别是0.6726,1.3155和15.23%,以上指标均优于上述的传统3种模型.相比于组合模型,优化的BP神经网络模型预测结果更优,进港和出港预测的平均相对误差分别降低了3.23% 和4.76%,结论证明,组合模型和优化的BP神经网络模型具有较高的预测精度.
推荐文章
船舶交通流量预测的灰色神经网络模型
船舶交通量
灰色模型
神经网络
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于非凸低秩稀疏约束的船舶交通流量预测
船舶交通流量
预测
非凸优化
交替方向乘子法
广义迭代阈值算法
优化的长山水道船舶交通流量灰色系统预测模型
水路运输
船舶交通流量
灰色预测
GM(1,1)优化模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AIS船舶数据的港口交通流量预测模型研究
来源期刊 交通信息与安全 学科 交通运输
关键词 船舶交通流量预测 AIS数据 基因算法 神经网络 非参数回归 组合模型
年,卷(期) 2018,(3) 所属期刊栏目 交通规划与管理
研究方向 页码范围 72-78
页数 7页 分类号 U69
字数 5298字 语种 中文
DOI 10.3963/j.issn.1674-4861.2018.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟鸣 武汉理工大学智能交通系统研究中心 11 31 4.0 5.0
10 李晋 武汉理工大学能源与动力工程学院 1 6 1.0 1.0
11 李扬威 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (97)
参考文献  (15)
节点文献
引证文献  (6)
同被引文献  (33)
二级引证文献  (6)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(10)
  • 参考文献(2)
  • 二级参考文献(8)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(10)
  • 参考文献(1)
  • 二级参考文献(9)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(8)
  • 引证文献(4)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
船舶交通流量预测
AIS数据
基因算法
神经网络
非参数回归
组合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导