高光谱遥感能同时获取地物空间影像和连续且精细的光谱信息,以图谱合一的形式更为精确地描述地物,然而高光谱影像普遍存在同物异谱和同谱异物现象,给准确地物分类带来挑战;激光雷达(light detection and ranging,LiDAR)能够获取地物拓扑信息,可用于构建地表三维模型,但单纯采用LiDAR数据无法准确识别地物.基于以上2点,开展高光谱影像和LiDAR数据的融合研究,采用形态学属性剖面进行特征提取,借助稀疏多项式逻辑回归分类器分类,探讨在不同特征组合下的融合与分类效果;并以黑河中游张掖绿洲农业区精细作物分类为目标,采用航空高光谱影像和LiDAR DSM数据对本文方法进行了应用验证.研究表明,该方法可获得精度更高和稳定性更好的分类结果,高光谱与LiDAR融合的方法分类精度最高可达94.50%.