基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用集成算法中的Bagging、Boosting和Random Forest三个方法,选取股票指数中的中小板指数、深证成指数、上证指数、创业板指数4组数据进行分析,得出Random Forest对上证指数、中小板指预测结果较好;Boosting对创业板指预测结果较好;Bagging对深证成指预测较好.并在4个板指中,随机选取了4支股票数据(分别为大连重工、中南建设、中国医药、东方国信)进行分析,得出集成算法在数据为200个的情况下,预测结果较为准确,其中不同方法对不同股票的适宜程度有所不同.
推荐文章
基于集成学习的股票指数预测方法
股指预测
集成学习
模型聚合
机器学习
分类器
指数行情
基于结构修剪神经网络的股票指数预测模型
股票指数预测
预测指标体系
BP算法
贝叶斯分析
网络结构修剪
基于集成学习的股票指数预测方法
股指预测
集成学习
模型聚合
机器学习
分类器
指数行情
基于Adaptive Lasso的股票指数跟踪问题研究
Adaptive Lasso
指数跟踪
沪深 300 指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集成算法的股票指数预测
来源期刊 经济数学 学科 工学
关键词 股票指数 袋装法 提升算法 随机森林
年,卷(期) 2018,(4) 所属期刊栏目 金融工程
研究方向 页码范围 28-30
页数 3页 分类号 TP312
字数 1898字 语种 中文
DOI 10.3969/j.issn.1007-1660.2018.04.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙德山 辽宁师范大学数学学院 66 560 13.0 21.0
2 王玥 辽宁师范大学数学学院 13 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (13)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
股票指数
袋装法
提升算法
随机森林
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
经济数学
季刊
1007-1660
43-1118/O1
16开
湖南省长沙市岳麓山湖南大学期刊社
42-364
1984
chi
出版文献量(篇)
1569
总下载数(次)
11
总被引数(次)
8356
论文1v1指导