原文服务方: 机器人       
摘要:
为解决人机交互中手势形变和无规律运动带来的跟踪难题,提出了一种基于特征空间切分建模的非参数核密度估计算法来实现手势跟踪.首先,在检测模块中利用AdaBoost分类器检测图像中手势的存在,将检测到的手势位置信息传送给跟踪模块,该模块精确提取手势目标从而对其颜色建模.然后,利用目标的颜色模型对各帧图像进行后验概率密度估算,获取运动目标的概率密度图像,将其分解成手势运动区和同色干扰区.最后,对同色干扰区采用混合高斯建模来削弱同色目标的干扰.当目标丢失时启动再检测模块,并利用贝叶斯分类器与方差分类器实现手势目标重检.实验结果表明,该算法通过对特征空间切分建模以及不同分类器的级联解决了变形手势跟踪的同色干扰与再检测难题.该算法提高了跟踪的准确率(>81.5%),适合于非刚性物体做无规则运动的复杂场景.
推荐文章
基于SURF特征跟踪的动态手势识别算法
动态手势识别
加速鲁棒特征
特征跟踪
动态手势模型
基于计算机视觉的可变形手势跟踪算法改进研究
计算机视觉
人机交互
手势跟踪
基于Kinect的手势跟踪概述
Kinect
人机交互
手势跟踪
匹配搜索
粒子采样
基于CamShift和Kalman 滤波混合的视频手势跟踪算法
连续自适应数学期望移动
卡尔曼滤波
手势跟踪
颜色概率分布
搜索窗
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征空间切分建模的变形手势跟踪算法
来源期刊 机器人 学科
关键词 非参数核密度估计 变形手势 运动跟踪 概率密度图 同色干扰区 再检测模块
年,卷(期) 2018,(4) 所属期刊栏目 论文与报告
研究方向 页码范围 401-412
页数 12页 分类号 TP319
字数 语种 中文
DOI 10.13973/j.cnki.robot.170513
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓春 深圳清华大学研究院电子设计自动化实验室 4 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (163)
参考文献  (14)
节点文献
引证文献  (3)
同被引文献  (15)
二级引证文献  (4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(6)
  • 参考文献(3)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(3)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
非参数核密度估计
变形手势
运动跟踪
概率密度图
同色干扰区
再检测模块
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机器人
双月刊
1002-0446
21-1137/TP
大16开
1979-01-01
chi
出版文献量(篇)
2337
总下载数(次)
0
总被引数(次)
57113
论文1v1指导