基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对短文本信息篇幅短、信息量少、特征稀疏的特点,提出一种基于LDA(Laten Dirichlet Allocation)主题模型特征扩展的短文本分类方法.该方法利用LDA模型得到文档的主题分布,然后将对应主题下的词扩充到原来短文本的特征中,作为新的部分特征词,最后利用SVM分类方法进行分类.实验结果表明,相比于传统的基于VSM模型的分类方法,基于LDA特征扩展的短文本分类方法克服了特征稀疏的问题,在各个类别上的查准率、查全率和F1值都有所提高,充分验证了该方法对短文本分类的可行性.
推荐文章
基于自身特征扩展的短文本分类方法
短文本
稀疏
信号弱
扩展
离散度
相关度
基于LDA特征扩展的短文本分类
隐含狄利克雷分布
文本分类
支持向量机
特征扩展
基于关键词相似度的短文本分类方法研究
词向量
特征选择
短文本分类
特征权重
基于LDA-wSVM模型的文本分类研究
文本分类
潜在狄利克雷分布
支持向量机
权重计算
吉普斯抽样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LDA特征扩展的短文本分类方法研究
来源期刊 软件导刊 学科 工学
关键词 短文本分类 隐含狄利克雷分布(LDA) 特征扩展 SVM
年,卷(期) 2018,(3) 所属期刊栏目 软件理论与方法
研究方向 页码范围 63-66
页数 4页 分类号 TP301
字数 3651字 语种 中文
DOI 10.11907/rjdk.172295
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡朝举 华北电力大学控制与计算机工程学院 23 102 4.0 9.0
2 徐永峰 华北电力大学控制与计算机工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (84)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短文本分类
隐含狄利克雷分布(LDA)
特征扩展
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导