作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高分辨率遥感卫星影像是获取地物精细类别的重要数据源,快速准确地获取土地利用和土地覆盖分类信息可为土地利用规划、土地管理等提供重要的数据支撑和决策依据.本文开展了高分辨率影像面向对象分类研究,首先,利用多尺度分割方法对高分辨率影像进行分割,基于分割对象,选取不同地物类别样本并计算光谱特征、纹理特征、几何特征.然后,针对特征冗余问题,利用最大相关最小冗余算法选择优先级较高特征,在此基础上结合遗传算法对特征集进行适当扩充(mGA).在面向对象分类过程中,通过利用遗传算法对支持向量机模型进行快速参数寻优,并在此基础上对分割对象进行分类.最终地物总体精度达到85.93%,Kappa系数为0.8282.并将分类结果与最近邻分类和随机森林分类结果进行了比较,地物分类精度提高了4.05%和6.81%.实验结果表明:基于mGA特征优化及SVM参数选择进行改进的面向对象的分类方法是有效的.
推荐文章
基于GF-2遥感影像的面向对象分类方法比较研究
GF-2遥感影像
K-最近邻分类
支持向量机分类
CART决策树分类
面向对象的遥感影像单类分类
单类分类
面向对象技术
遥感影像
支持向量机
丘陵区高分影像面向对象信息提取研究
遥感
土地利用
面向对象分类
丘陵地区
基于面向对象的高分辨率遥感影像目标信息提取
面向对象
信息提取
空间关系
精度评价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于mGA-SVM算法的高分影像面向对象分类研究
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 最大特征最小冗余 遗传算法 支持向量机 面向对象
年,卷(期) 2018,(4) 所属期刊栏目 3S技术与应用
研究方向 页码范围 146-150
页数 5页 分类号 P237
字数 4385字 语种 中文
DOI 10.3969/j.issn.1672-5867.2018.04.040
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张景景 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (41)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最大特征最小冗余
遗传算法
支持向量机
面向对象
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导