作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的基于样本学习的图像超分辨率方法参数较多、运算速度较慢等问题,结合基于卷积神经网络的超分辨率方法,提出一种快速图像超分辨率方法.设计一学习网络,以低分辨率图像作为网络的输入,从根本上减少网络的运算负担,加速网络运算;减小卷积核尺寸使得网络训练参数减少,提高运算速度;最后以亚像素卷积层同时实现网络的映射和图像融合过程.将所提方法在通用测试集上进行测试,并与其他方法的测试结果进行了对比,所提方法生成的图像具有更高的峰值信噪比,且具有更好的主观视觉效果.实验结果表明所提方法不仅运算速度能够得到大幅提升,而且能够生成更高质量的超分辨率图像,具有更佳的超分辨率性能.
推荐文章
采用深度学习的快速超分辨率 图像重建方法
超分辨率图像重建
深度学习
卷积神经网络
级联
超分辨率图像配准方法研究
超分辨率
图像配准
亚像素
空间域
频率域
机器视觉系统超分辨率图像准确识别方法研究
机器视觉系统
超分辨率
图像识别
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 快速图像超分辨率方法研究
来源期刊 红外技术 学科 工学
关键词 超分辨率 卷积神经网络 深度学习 图像处理 峰值信噪比
年,卷(期) 2018,(3) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 269-274
页数 6页 分类号 TP751
字数 4338字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡坤琪 5 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (106)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
超分辨率
卷积神经网络
深度学习
图像处理
峰值信噪比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导