基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以提升流数据的分类挖掘效率为目标,研究将概念适应快速决策树算法(CVFDT)部署到流数据计算平台Spark上进行并行化的方案.设计了CVFDT基于Spark的并行化实现方案,首先对CVFDT算法进行属性间并行化改造,即分割点计算过程中的并行化;然后基于Spark在CVFDT的建树过程中将节点的所有属性列表转化为Spark特有的弹性分布式数据集RDD,通过计算由每个RDD生成的并行化任务,汇总并且比较每个最佳分割点,再计算Hoeffding边界作为节点分裂条件找到最佳分割点,从而递归创建决策树.实验结果表明,在Spark集群环境下,CVFDT算法的分类效率相对于单机环境有显著提高,改进后的并行化CVFDT算法对大规模流数据处理有良好的适应能力,而且合理设定RDD过滤可使分类效率进一步提高.
推荐文章
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于Spark的并行Eclat算法
关联规则挖掘
大数据
Spark
投影树
并行化
大数据环境下基于Spark的Bayes分类算法研究
大数据
Spark
并行流式化
贝叶斯分类
基于Spark的OWL语义规则并行化推理算法
语义推理
网络本体语言
OWL Horst规则
并行化
Spark
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark的CVFDT分类算法并行化研究
来源期刊 计算机技术与发展 学科 工学
关键词 数据流 CVFDT 并行化 Spark 弹性分布式数据集
年,卷(期) 2018,(6) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 35-38
页数 4页 分类号 TP301.6
字数 3047字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李玲娟 南京邮电大学计算机学院 88 927 14.0 26.0
2 庄荣 南京邮电大学计算机学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (34)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(5)
  • 参考文献(5)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据流
CVFDT
并行化
Spark
弹性分布式数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导