基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统道路障碍物检测算法准确性和鲁棒性不强等问题,本文提出一种基于卷积神经网络的道路障碍物检测算法.该算法首先对车载图像预处理生成障碍物候选区域,再将障碍物候选区域输入到改进的卷积神经网络中,进行精确识别和剔除,区分道路障碍物和非障碍物.改进的卷积神经网络在原有网络的基础上,调整了卷积核的大小和个数、池化层的空间尺寸和神经网络的深度,并且在卷积层后选择性的加入池化层,提高障碍物的识别率.在不同场景中进行了测试,实验结果表明:本文提出的道路障碍物检测算法有效的提高了障碍物的识别率,识别率达到98.2%,并且拥有较高的鲁棒性.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于改进的卷积神经网络的道路井盖缺陷检测研究
井盖缺陷
卷积神经网络
激活函数
神经元
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的道路障碍物检测算法
来源期刊 有线电视技术 学科
关键词 障碍物 感兴趣区域 阈值分割 候选区域 卷积神经网络
年,卷(期) 2018,(6) 所属期刊栏目 技术前沿
研究方向 页码范围 19-23
页数 5页 分类号
字数 2950字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚剑敏 福州大学物理与信息工程学院 86 238 8.0 10.0
2 权鸿斌 福州大学物理与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (51)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (19)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
障碍物
感兴趣区域
阈值分割
候选区域
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
有线电视技术
月刊
1008-5351
11-4021/TN
北京市2144信箱
chi
出版文献量(篇)
10278
总下载数(次)
7
总被引数(次)
11175
论文1v1指导