原文服务方: 计算机测量与控制       
摘要:
提升机载吊舱的后勤保障能力,适应吊舱测试中多型号、多故障类型和测试环境动态变化的测试要求,是打赢现代化战争的重要保障;支持向量机(SVM)算法适用于小样本、高维度、非线性分类问题,SVM相关参数是影响算法性能的重要因素;基于K-CV算法和粒子群算法两种改进的SVM模型可以实现SVM参数优化,K-CV算法可以交叉验证优化模型参数,粒子群算法可以对SVM参数进行动态寻优,建立多核SVM吊舱故障诊断模型;两种算法都可以提高吊舱故障诊断模型的准确率,提高模型的学习能力和泛化能力,有效对吊舱的故障进行定量和定位诊断.
推荐文章
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
基于粒子群算法和支持向量机的故障诊断研究
最小二乘支持向量机
粒子群算法
故障诊断
全局最优
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的机载吊舱故障诊断优化算法
来源期刊 计算机测量与控制 学科
关键词 吊舱 粒子群 支持向量机 故障诊断
年,卷(期) 2018,(1) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 71-75
页数 5页 分类号 V416|TP274
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.01.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姬传庆 3 4 1.0 1.0
2 黄毅 3 4 1.0 1.0
3 潘继文 3 4 1.0 1.0
4 李侍林 4 4 2.0 2.0
5 刘治超 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (66)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
吊舱
粒子群
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导