基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着现代计算机技术的发展与应用,计算机辅助诊断系统在医学影像分析领域的地位变得愈发重要.其技术的关键在于病灶的定位与分类.由于图像的特征提取十分复杂,若应用传统机器学习方法,则需对图像作大量的预处理.文中提出一种基于深度学习的肺部肿瘤检测方法,运用卷积神经网络对患者肺部肿瘤图像进行特征提取.结合区域建议网络预测肿瘤在图片中可能存在的位置,同时生成建议框.利用学习好的特征对目标区域进行分类并微调建议框的位置.该方法无需人工设计目标特征,通过卷积神经网络学习到的特征更加具有代表性,且能够较好地预测肿瘤的位置.在NLST以及Kaggle的数据集上对该方法进行了评估.实验结果表明,该方法具有较高的准确率和效率.
推荐文章
基于深度学习的肺部肿瘤图像识别方法
样本扩充
迁移学习
深度学习
归一预处理
医学图像识别
基于深度学习的肺部医学图像分析研究进展
深度学习
医学图像
肺部肿瘤
计算机辅助诊断
基于CNN深度学习的机器人抓取位置检测方法
CNN深度学习
机器人
抓取位置
检测
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的肺部肿瘤检测方法
来源期刊 计算机技术与发展 学科 工学
关键词 深度学习 肺部肿瘤检测 特征提取 卷积神经网络 区域建议网络
年,卷(期) 2018,(4) 所属期刊栏目 应用开发研究
研究方向 页码范围 201-204
页数 4页 分类号 TP391
字数 2960字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.04.043
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢世朋 南京邮电大学通信与信息工程学院 14 42 4.0 5.0
2 陈强锐 南京邮电大学通信与信息工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (855)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
肺部肿瘤检测
特征提取
卷积神经网络
区域建议网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导