基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的卷积神经网络(CNN)通常会丢弃负值特征信息,进而影响着图像分类的效果.针对CNN更好地学习图像特征的问题,对传统的CNN模型进行改进,提出Supplement CNN模型.首先将卷积层得到的特征图取反,并同原特征图一起作用Leaky ReLU激活函数以保留图像的负值特征信息;然后传递至下一层,增加前向传播的特征信息,影响反向传播算法的权值更新,以有利于图像的分类;最后通过实验阐述了Supplement CNN模型受网络层数的影响情况.与传统的CNN及部分扩展模型进行对比实验的结果表明,该模型是有效的.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Supplement卷积神经网络的图像分类方法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 深度学习 卷积神经网络 图像分类 负值特征
年,卷(期) 2018,(3) 所属期刊栏目 图像与视觉
研究方向 页码范围 385-391
页数 7页 分类号 TP391.41
字数 3660字 语种 中文
DOI 10.3724/SP.J.1089.2018.16322
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈俊 成都信息工程大学计算机学院 31 166 8.0 12.0
2 王强 成都信息工程大学计算机学院 5 21 3.0 4.0
3 李孝杰 成都信息工程大学计算机学院 7 19 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (18)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
图像分类
负值特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导