基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,基于深度学习的自然场景文本检测在复杂的背景下取得很好的效果,但难以准确检测到小尺度文本.本文针对此问题提出了一种基于特征融合的深度神经网络,该网络将传统深度神经网络中的高层特征与低层特征相融合,构建一种高级语义的神经网络.特征融合网络利用网络高层的强语义信息来提高网络的整体性能,并通过多个输出层直接预测不同尺度的文本.在ICDAR2011和ICDAR2013数据集上的实验表明,本文的方法对于小尺度的文本,定位效果显著.同时,本文所提的方法在自然场景文本检测中具有较高的定位准确性和鲁棒性,F值在两个数据集上均达到0.83.
推荐文章
基于对象建议算法的自然场景文本检测
对象建议算法
最稳定极值区域
贝叶斯分类器
自然场景文本检测
面向自然场景的中文文本检测
文本检测
特征金字塔
BAM注意力机制
可微二值化
AC Loss
多方向自然场景文本检测
自然场景文本检测
颜色增强的最大稳定极值区域
特征提取
多方向估计
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征融合网络的自然场景文本检测
来源期刊 计算机系统应用 学科
关键词 深度学习 自然场景 文本检测 特征融合 文本边界框
年,卷(期) 2018,(10) 所属期刊栏目 专论·综述
研究方向 页码范围 1-10
页数 10页 分类号
字数 7550字 语种 中文
DOI 10.15888/j.cnki.csa.006539
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕岳 华东师范大学计算机科学与软件工程学院 18 134 5.0 11.0
2 余峥 华东师范大学计算机科学与软件工程学院 1 3 1.0 1.0
3 王晴晴 华东师范大学计算机科学与软件工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (20)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
自然场景
文本检测
特征融合
文本边界框
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
上海市自然科学基金
英文译名:
官方网址:http://www.lawyee.net/Act/Act_Display.asp?RID=46696
项目类型:面上项目
学科类型:
论文1v1指导