基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从遥感影像中提取生态位因子在物种潜在分布模型中扮演着重要角色,然而这些模型存在数据质量低和训练样本少等问题.随着先进数据采集设备的应用,所获得的大量动物轨迹数据可以用来对物种潜在栖息地进行标记,进而从遥感影像中提取用于物种分布模型的有效训练样本.本文首先利用DBSCAN算法对动物轨迹数据进行聚类,基于聚类结果将遥感影像按照小区域分成正负样本,然后利用提出一种改进的卷积神经网络进行训练和预测斑头雁在青海湖周边的潜在分布情况.通过和传统基于灰度共生矩阵的方法进行比较,本文提出的方法在各项评价指标上都有一定提升,同时实验结果也表明我们方法能更好的预测斑头雁在青海湖周围的潜在分布情况.
推荐文章
基于卷积神经网络的横向转角预测方法
转角预测
卷积神经网络
数据处理
周围环境探测
网络训练
结果分析
基于全卷积层神经网络的轴承剩余寿命预测
全卷积层
神经网络
轴承
剩余寿命预测
基于卷积神经网络的发动机故障预测方法
故障预测
深度学习
卷积神经网络(CNN)
发动机
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的候鸟潜在分布预测
来源期刊 计算机系统应用 学科
关键词 卷积神经网络 DBSCAN 栖息地 物种分布 候鸟
年,卷(期) 2018,(10) 所属期刊栏目 研究开发
研究方向 页码范围 248-254
页数 7页 分类号
字数 4808字 语种 中文
DOI 10.15888/j.cnki.csa.006571
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阎保平 中国科学院计算机网络信息中心 162 2464 23.0 43.0
2 罗泽 中国科学院计算机网络信息中心 42 157 7.0 10.0
3 朴英超 中国科学院计算机网络信息中心 5 9 1.0 3.0
4 苏锦河 中国科学院计算机网络信息中心 4 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (107)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(11)
  • 参考文献(2)
  • 二级参考文献(9)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
DBSCAN
栖息地
物种分布
候鸟
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
论文1v1指导