武器装备体系作战仿真研究隶属于复杂系统研究范畴,首次对基于Nash-Q的网络信息体系(network information system-of-systems,NISoS)对抗认知决策行为进行探索研究.Nash-Q算法与联合Q-learning算法具有类似的形式,其区别在于联合策略的计算,对于零和博弈体系作战模型,由于Nash-Q不需要其他Agent的历史信息即可通过Nash均衡的求解而获得混合策略,因此更易于实现也更加高效.建立了战役层次零和作战动态博弈模型,在不需要其他Agent的完全信息时,给出了Nash均衡的求解方法.此外,采用高斯径向基神经网络对Q表进行离散,使得算法具有更好的离散效果以及泛化能力.最后,通过NISoS作战仿真实验验证了算法的有效性以及相比基于Q-learning算法以及Rule-based决策算法具有更高的收益,并且在离线决策中表现优异.