基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电力负荷预测,提出了一种优化的核极限学习机(O-KELM)的方法.核极限学习机(KELM)方法仅以核函数表示未知的隐含层非线性特征映射,无需选择隐含层的节点数目,通过正则化最小二乘算法计算网络的输出权值.将优化算法应用于KELM方法中,给出基于遗传算法、微分演化、模拟退火的3种优化KELM方法,优化选择核函数的参数以及正则化系数,以进一步提高KELM方法的学习性能.为验证方法的有效性,将O-KELM方法应用于某地区的中期峰值电力负荷预测研究中,在同等条件下与优化极限学习机(O-ELM)方法、SVM等方法进行比较.实验结果表明,O-KELM方法具有很好的预测性能,其中GA-KELM方法的建模精度最高.
推荐文章
基于相关向量机的电力负荷中期预测
电力负荷
中期预测
相关向量机
模型实验
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化核极限学习机的中期电力负荷预测
来源期刊 测控技术 学科 工学
关键词 电力负荷 预测 核极限学习机 优化算法
年,卷(期) 2018,(6) 所属期刊栏目 先进算法与人工智能
研究方向 页码范围 15-19
页数 5页 分类号 TP391|TM614
字数 3823字 语种 中文
DOI 10.19708/j.ckjs.2018.06.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李军 兰州交通大学自动化与电气工程学院 70 490 13.0 19.0
5 任瑞琪 兰州交通大学自动化与电气工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (103)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (45)
二级引证文献  (4)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
电力负荷
预测
核极限学习机
优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导