基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对用户进行模糊C均值聚类,使其以不同的隶属度隶属于不同聚类,解决了因硬聚类导致的推荐准确度低的问题,获得更加准确的聚类效果;针对推荐算法的隐私泄露问题,通过将Laplace噪声引入到模糊C均值聚类过程中,实现基于差分隐私保护的模糊C均值聚类推荐.实验结果表明,该算法在保证推荐质量的同时有效改善了推荐系统的安全性.
推荐文章
差分隐私保护在推荐系统中的应用研究
推荐系统
个人隐私保护
差分隐私
矩阵分解
差分隐私保护研究综述
差分隐私
隐私保护
数据失真
数据挖掘
数据发布
基于差分隐私机制的位置数据隐私保护策略
位置数据
访问频率
差分隐私保护
多级查询树
差分隐私软大间隔聚类
差分隐私
软大间隔聚类
隐私保护
联邦学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于差分隐私保护的模糊C均值聚类推荐
来源期刊 计算机系统应用 学科
关键词 协同过滤 模糊C均值聚类 差分隐私
年,卷(期) 2018,(10) 所属期刊栏目 软件技术·算法
研究方向 页码范围 189-195
页数 7页 分类号
字数 6362字 语种 中文
DOI 10.15888/j.cnki.csa.006557
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋宗礼 北京工业大学信息学部 103 997 17.0 27.0
2 乔向梅 北京工业大学信息学部 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (982)
参考文献  (15)
节点文献
引证文献  (4)
同被引文献  (5)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(5)
  • 参考文献(2)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(3)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
模糊C均值聚类
差分隐私
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导