基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对基于扩展Kalman滤波(EKF)的多径估计算法需要对非线性观测方程进行线性化.对初值比较敏感,造成估计性能下降的问题,提出了基于智能优化的多径估计算法.该算法将估计误差的二阶矩作为目标函数,将瞬时误差作为约束条件,同时考虑多径参数的先验信息,实现了将多径估计问题转化为具有约束条件的优化问题.然后,利用一种智能优化算法来解决该优化问题.本文采用了ε等级约束差分进化(εCRDE)算法来解决有约束条件的优化问题,并对该算法进行改进,使改进后的εCRDE算法可以实现多径参数的迭代估计.仿真结果表明,与EKF算法相比,在单一多径和2路多径情况下,基于改进εCRDE的多径估计算法都具有更好的估计性能.
推荐文章
基于差分进化改进粒子滤波的多径估计算法
状态估计
粒子滤波
差分进化
多径干扰
导航系统
基于差分进化改进粒子滤波的多径估计算法
状态估计
粒子滤波
差分进化
多径干扰
导航系统
基于差分进化算法的卫星轨道计算方法
卫星轨道预测
差分进化算法
全局近点角
轨道根数
基于多策略排序变异的多目标差分进化算法
多目标优化
多策略差分进化
排序变异算子
自适应参数调整
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ε等级约束差分进化的多径估计算法
来源期刊 电子学报 学科 地球科学
关键词 多径估计 优化算法 差分进化(DE) Kalman滤波
年,卷(期) 2018,(1) 所属期刊栏目 学术论文
研究方向 页码范围 167-174
页数 8页 分类号 P228.1
字数 6303字 语种 中文
DOI 10.3969/j.issn.0372-2112.2018.01.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈杰 北京理工大学复杂系统智能控制与决策国家重点实验室 132 1712 22.0 35.0
2 谢刚 太原理工大学信息工程学院 109 809 14.0 23.0
3 任密蜂 太原理工大学信息工程学院 10 15 2.0 3.0
4 程兰 太原理工大学信息工程学院 18 68 5.0 8.0
5 邢艳君 太原理工大学信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (59)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多径估计
优化算法
差分进化(DE)
Kalman滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导